The Benefits of Knowing Gen AI consulting

AI Roadmap Workbook for Non-Technical Business Leaders


Image

A clear, hype-free workbook showing where AI can actually help your business — and where it won’t.
Dev Guys Team — Smart thinking. Simple execution. Fast delivery.

The Need for This Workbook


In today’s business world, leaders are often told they must have an AI strategy. AI discussions are happening everywhere—from vendors to competitors. But business heads often struggle between two bad decisions:
• Accepting every proposal and hoping it works out.
• Rejecting all ideas out of fear or uncertainty.

It guides you to make rational decisions about AI adoption without hype or hesitation.

Forget models and parameters — focus on how your business works. AI should serve your systems, not the other way around.

Using This Workbook Effectively


Work through this individually or with your leadership team. The purpose is reflection, not speed. By the end, you’ll have:
• A prioritised list of AI use cases linked to your business goals.
• A visible list of areas where AI won’t help — and that’s acceptable.
• A realistic, step-by-step project plan.

Treat it as a lens, not a checklist. If your CFO can understand it in a minute, you’re doing it right.

AI strategy is just business strategy — minus the buzzwords.

Step One — Focus on Business Goals


Focus on Goals Before Tools


Too often, leaders ask about tools instead of outcomes — that’s the wrong start. Start with measurable goals that truly impact your business.

Ask:
• What 3–5 business results truly matter this year?
• Which parts of the business feel overwhelmed or inefficient?
• Which processes are slowed by scattered information?

AI is valuable only when it moves key metrics — revenue, margins, time, or risk. Ideas without measurable outcomes belong in the experiment bucket.

Start here, and you’ll invest in leverage — not novelty.

Understand How Work Actually Happens


Understand the Flow Before Applying AI

RAG
AI fits only once you understand the real workflow. Simply document every step from beginning to end.

Examples include:
• New lead arrives ? assigned ? nurtured ? quoted ? revised ? finalised.
• Customer issue logged ? categorised ? responded ? closed.
• Invoice generated ? sent ? reminded ? paid.

Each step has three parts: inputs, actions, outputs. AI adds value where inputs are messy, actions are repetitive, and outputs are predictable.

Rank and Select AI Use Cases


Assess Opportunities with a Clear Framework


Evaluate AI ideas using a simple impact vs effort grid.

Use a mental 2x2 chart — impact vs effort.
• Focus first on small, high-impact changes.
• Big strategic initiatives take time but deliver scale.
• Nice-to-Haves — low impact, low effort.
• High cost, low reward — skip them.

Add risk as a filter: where can AI act safely, and where must humans approve?.

Small wins set the foundation for larger bets.

Foundations & Humans


Get the Basics Right First


AI projects fail more from poor data than bad models. Check data completeness, process clarity, and alignment.

Human Oversight Builds Trust


Let AI assist, not replace, your team. Over time, increase automation responsibly.

The 3 Classic Mistakes


Avoid the Three AI Traps for Non-Tech Leaders


01. The Shiny Demo Trap — getting impressed by flashy demos with no purpose.
02. The Pilot Problem — learning without impact.
03. The Automation Mirage — expecting overnight change.

Fewer, focused projects with clear owners and goals beat scattered enthusiasm.

Working with Experts


Non-tech leaders guide direction, not coding. Focus on measurable results, not buzzwords. Expose real examples, not just ideal scenarios. Clarify success early and plan stepwise rollouts.

Transparency about failures reveals true expertise.

Signs of a Strong AI Roadmap


How to Know Your AI Strategy Works


It’s simple, measurable, and owned.
Buzzword-free alignment is visible.
Ownership and clarity drive results.

Quick AI Validation Guide


Before any project, confirm:
• Which business metric does this improve?
• Which workflow is involved, and can it be described simply?
• Do we have data and process clarity?
• Who owns the human oversight?
• What is the 3-month metric?
• If it fails, what valuable lesson remains?

Final Thought


AI done right feels stable, not overwhelming. Focus on leverage, not hype. When executed well, AI simply amplifies how you already win.

Leave a Reply

Your email address will not be published. Required fields are marked *